Custom Components GalleryNEW
ExploreCustom Components GalleryNEW
ExploreNew to Gradio? Start here: Getting Started
See the Release History
To install Gradio from main, run the following command:
pip install https://gradio-builds.s3.amazonaws.com/b228ec807c7ea4686850abae533dd16608ac288b/gradio-4.31.4-py3-none-any.whl
*Note: Setting share=True
in
launch()
will not work.
with gradio.Tab():
Tab (or its alias TabItem) is a layout element. Components defined within the Tab will be visible when this tab is selected tab.
with gr.Blocks() as demo:
with gr.Tab("Lion"):
gr.Image("lion.jpg")
gr.Button("New Lion")
with gr.Tab("Tiger"):
gr.Image("tiger.jpg")
gr.Button("New Tiger")
Parameter | Description |
---|---|
label str | None default: None | The visual label for the tab |
visible bool default: True | If False, Tab will be hidden. |
interactive bool default: True | If False, Tab will not be clickable. |
id int | str | None default: None | An optional identifier for the tab, required if you wish to control the selected tab from a predict function. |
elem_id str | None default: None | An optional string that is assigned as the id of the <div> containing the contents of the Tab layout. The same string followed by "-button" is attached to the Tab button. Can be used for targeting CSS styles. |
elem_classes list[str] | str | None default: None | An optional string or list of strings that are assigned as the class of this component in the HTML DOM. Can be used for targeting CSS styles. |
render bool default: True | If False, this layout will not be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later. |
gradio.Tab.select(Β·Β·Β·)
Event listener for when the user selects or deselects the Tab. Uses event data gradio.SelectData to carry value
referring to the label of the Tab, and selected
to refer to state of the Tab. See EventData documentation on how to use this event data
Parameter | Description |
---|---|
fn Callable | None | Literal['decorator'] default: "decorator" | the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component. |
inputs Component | list[Component] | set[Component] | None default: None | List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list. |
outputs Component | list[Component] | None default: None | List of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list. |
api_name str | None | Literal[False] default: None | defines how the endpoint appears in the API docs. Can be a string, None, or False. If set to a string, the endpoint will be exposed in the API docs with the given name. If None (default), the name of the function will be used as the API endpoint. If False, the endpoint will not be exposed in the API docs and downstream apps (including those that |
scroll_to_output bool default: False | If True, will scroll to output component on completion |
show_progress Literal[('full', 'minimal', 'hidden')] default: "full" | If True, will show progress animation while pending |
queue bool | None default: None | If True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app. |
batch bool default: False | If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length |
max_batch_size int default: 4 | Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True) |
preprocess bool default: True | If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the |
postprocess bool default: True | If False, will not run postprocessing of component data before returning 'fn' output to the browser. |
cancels dict[str, Any] | list[dict[str, Any]] | None default: None | A list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish. |
every float | None default: None | Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds. |
trigger_mode Literal[('once', 'multiple', 'always_last')] | None default: None | If "once" (default for all events except |
js str | None default: None | Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components. |
concurrency_limit int | None | Literal['default'] default: "default" | If set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the |
concurrency_id str | None default: None | If set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit. |
show_api bool default: True | whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False. |